A Fusion of Crossover and Local Search
نویسندگان
چکیده
It is well known that GAs are not well suited for fine-tuning structures that are very close to optimal solutions and that it is essential to incorporate local search methods, such as neighborhood search, into GAs. This paper explores the use of a new GA operator called multi-step crossover fusion (MSXF), which combines a crossover operator with a neighborhood search algorithm. MSXF performs a local search essentially in the region within the search space between parent solutions to find a locally optimal solution that inherits the parents’ characteristics. GA/MSXF was applied to job-shop scheduling problem (JSSP). Experiments using benchmark problems show promising GA/MSXF performance even with
منابع مشابه
مدل حل مبتنی بر جستجوگر محلی ژنتیک برای مساله زمان بندی استقرار کارگاهی تعمیم یافته با زمانهای عملیات قابل کنترل
Although incorporating complexities and flexibilities of real world manufacturing systems into classic scheduling problems results in problems with greater complexity, it has immense theoretical and practical importance due to its impressive effect on system performance. In this research, three basic assumptions of a job shop scheduling problem have been revised to develop a model with three ty...
متن کاملSolving the Csum Permutation Flowshop Scheduling Problem by Genetic Local Search
In this paper a new metaheuristic method is proposed to solve the classical permutation flowshop scheduling problem with the objective of minimizing sum of completion times. The representative neighbourhood combines the stochastic sampling method mainly used in Simulated Annealing and the best descent method elaborated in Tabu Search and integrates them naturally into a single method. The metho...
متن کاملA Novel Experimental Analysis of the Minimum Cost Flow Problem
In the GA approach the parameters that influence its performance include population size, crossover rate and mutation rate. Genetic algorithms are suitable for traversing large search spaces since they can do this relatively fast and because the mutation operator diverts the method away from local optima, which will tend to become more common as the search space increases in size. GA’s are base...
متن کاملApplication of Combined Local Object Based Features and Cluster Fusion for the Behaviors Recognition and Detection of Abnormal Behaviors
In this paper, we propose a novel framework for behaviors recognition and detection of certain types of abnormal behaviors, capable of achieving high detection rates on a variety of real-life scenes. The new proposed approach here is a combination of the location based methods and the object based ones. First, a novel approach is formulated to use optical flow and binary motion video as the loc...
متن کاملAdaptive Decision Fusion in Detection Networks
In a detection network, the final decision is made by fusing the decisions from local detectors. The objective of that decision is to minimize the final error probability. To implement and optimal fusion rule, the performance of each detector, i.e. its probability of false alarm and its probability of missed detection as well as the a priori probabilities of the hypotheses, must be known. How...
متن کامل